If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2q^2-3q=180
We move all terms to the left:
2q^2-3q-(180)=0
a = 2; b = -3; c = -180;
Δ = b2-4ac
Δ = -32-4·2·(-180)
Δ = 1449
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1449}=\sqrt{9*161}=\sqrt{9}*\sqrt{161}=3\sqrt{161}$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-3\sqrt{161}}{2*2}=\frac{3-3\sqrt{161}}{4} $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+3\sqrt{161}}{2*2}=\frac{3+3\sqrt{161}}{4} $
| -12=4(z+16) | | 32r+8•(1.3r)=496.08 | | h+2h+5h=16 | | 3y–18=-2+5y | | 2(d-8)+3=7 | | 1=0.2x-0.8-35 | | x8-6=-12 | | 3(v+13)=-6 | | 3/w=4 | | -15-6d=8(5d+4) | | .8+9p=9p-7 | | 343*(7^x)=1/49 | | 28r+9.8•r=438.48 | | 343X(7^x)=1/49 | | 28r+9.8=438.48 | | C=39.03+.25x | | 343(7^x)=1/49 | | 66-v=186 | | 2y-3=4y+6. | | 28r+7•(1.4r)=438.48 | | 3u+3u=6 | | 15y+8=97y | | -3=-6/(5+y) | | 5c-2c-2=16 | | 15y+8=47y | | 18/x-5=6/x+7 | | -3=9*5-2k/5 | | 5/2x-1=13 | | -7-5(1+8r)=24 | | 3/4(x-4)=-1/4(x-16) | | -8*3x-0.25=2*9-7x | | -1/3p=1/2 |